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Introduction

In finance volatility is an important value to measure risk.

Return time series

))(ln())(ln()( ttptptr D--=

Åasset price return p(t): price at t

Volatility is a measure of variation of returns.  



Å Fat- tailed return distribution 

Å Volatility clustering

Å Absence of autocorrelations in return

Å etc

Empirical stylized facts

Volatility is not a direct observable on the markets.

We need to evaluate volatility.

To evaluate volatility we use a model which mimics the properties of the 
volatility and captures  the stylized facts of the financial time series.



Oct. 19 1987

Gopikrishnan et al., cond -mat/9905305

price return

volatility 

clustering

Gaussian 

S&P



Fat-tailed return distribution

Gopikrishnan et al., cond -mat/9905305

Fat-tailed



Tsallis et. al Physica A 324, 89 (2003) 
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GARCH(1,1) model Bollerslev(1986)

Ŗeturn time series yt

ts :volatility

Standard normal distribution

The most popular model which captures stylized facts

Error term

It is known that this model exhibits volatility clustering and fat-tailed 
return distribution.

However it is still not adequate to fully account for the fat-tailed 
properties of the data.



Modification 
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Use more fatter distributions

Studentôs t-distribution

Our proposal:

Use rational function for the error term

It is not known what is the optimal distribution function. 
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Ex.

Error term

Generalized error distribution
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Rational Error function
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The simplest probability distribution which shows a fat-tailed form:

A polynomial of degree M 

A polynomial of degree N 
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Parameter  q tunes the shape of the rational error function.

Nuyts, Platten(2001)

With q=2, this function recovers the Studentôs t-distribution with 

three degree of freedom
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q=1.7

Standard normal



GARCH model with rational error

,ttty es=

2

1

2

1

2

-- ++= ttt y sbaws

))2(1(
)(

422

tt

t
q

q
P

eep
e

+-+
=

Error term is given by 

GARCH-RE parameters a,b,wandq are determined so that 
the model matches the financial data. 

Bayesian inference performed by the Markov chain Monte Carlo



GARCH-RE model  parameter estimation

Bayesian inference

Markov chain Monte Carlo

Metropolis-Hastings method

Metropolis method

Empirical analysis with JPY/USD exchange rate returns

GARCH ɀRE model

GARCH model with normal error(GARCH-N)



Bayesian inference

)()|()|( qpqqp yfy ´

Bayesô theorem
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)|( yqp posterior distribution

)|( qyL likelihood function of GARCH-RE model

)(qp prior distribution

Probability distribution of ɗ
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Bayesôtheorem tells us the probability distribution of theta

q,,, wbaq=

q,,, wbaq=



Likelihood function of GARCH-RE model

yt : time series
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Markov Chain Monte Carlo
Model parameters are  evaluated as  expectation values.

We use the Markov Chain Monte Carlo method to integrate it numerically.

We know the probability distribution of theta

Analytical integration is impossible.

Metropolis method is not good enough.  

Metropolis ɀHastings method with multi-ÄÉÍÅÎÓÉÏÎÁÌ 3ÔÕÄÅÎÔȭÓ Ô-distribution

We use 



Then, accept      with the following acceptance. 
Otherwise keep the old 

q

Metropolis-Hastings method

q

)(qgDraw        from a proposal densityq¡
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The performance of the method depends on ȅ.

proposal density

Metropolis et. al (1953)

Hastings (1970)
from

)|( yqp use a simple

)()|( qqp gy º Studentôs t-distribution



4-Ä ÓÔÕÄÅÎÔȭÓ Ô-distribution

We need the following parameters.
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Covariance matrix

We estimate these parameters from 

a short MCMC run.

The parameters can be updated 

adaptively during the MCMC 

simulation.

unknown parameters 



Numerical Simulations

We generated 2000 data with a 0.05 b 0.9 w 0.05 and q=1.8 .
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Artificial input data of GARCH-RE model
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We do Bayesian inference by Metropolis-Hastings with 
3ÔÕÄÅÎÔȭÓ Ô-distribution(MH-STD)

Çheck if the MH-STD is correct

Çompare the performance with Metropolis method
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Acceptance at Metropolis-Hastings  every 1000 updates 

Studentôs t-distribution parameters are less accurate 



Covariance matrix every 1000 updates
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Sampling results of a

Metropolis

Metropolis-Hastings

correlated

de-correlated



Metropolis-Hastings

Metropolis

Autocorrelation function (ACF)



Ŭ ɓ ɤ q

true 0.05 0.9 0.05 1.8

MH+STD 00585 0.885 0.058 1.771

Stand.Dev. 0.0096 0.016 0.010 0.047

2t 2.0 0.1 2.3 0.1 2.3 0.1 2.0 0.1

Metropolis 0.0585 0.884 0.058 1.769

Stand. Dev. 0.0097 0.016 0.010 0.047

2t 400 140 770 360 760 340 60 3

Results

Autocorrelation time(ACT) ä
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Small ACT

Large ACT

MH-STD performs better than Metropolis

(ACT)MH+STD<<(ACT)Metropolis



Empirical Analysis
JPY/USD exchange rate returns

JAN 4,1999- DEC 29, 2006

Bayesian inference of GARCH-RE with these data 

Compare with GARCH model with normal errors by the goodness-of-fit



Acceptance at Metropolis-Hastings  every 1000 updates 



Covariance matrix every 1000 updates
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Metropolis-Hastings

Autocorrelation function



Ŭ ɓ ɤ q

GARCH-RE 0.043 0.946 0.0127 1.64

Stand. Dev. 0.011 0.015 0.0057 0.06

2t 6.5±2.9 7.8±1.8 8.6±1.9 10.0±7.5

AIC 1878.26

DIC 3743.86

GARCH-N 0.0314 0.940 0.0113

Stand. Dev. 0.0077 0.017 0.0049

2t 4.7±1.3 8.2±2.9 9.5±3.6

AIC 1904.35

DIC 3799.52

Results

AIC and DIC favor GARCH-RE model.

GARCH-RE model is superior to GARCH-Normal model.

The goodness-of-fit

AIC (Akaike information  criterion) =

DIC(Deviance information criterion)=

k:# of parameters

))]((ln2)([ln2 qq LEL -

kL 2)(ln2 +- q

AIC and DIC(GARCH-RE)< AIC and DIC(GARCH-N)



Results

Panasonic  2006/07/04ð2009/12/30    856days 

GARCH-R GARCH-N

AIC -4151.29 -4148.36

DIC -4156.31 -4151.97

Comparison with Realized Volatility(RV)
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Summary

ÅWe proposed a new GARCH - type model with a rational error 
function.

ÅWe developed the Bayesian inference by the MH with a multi -
dimensional Studentôs distribution and found that the method 
performs better than the Metropolis method.

ÅWe did an empirical analysis with JPY/USD exchange rate 
returns for the GARCH -RE model and found that the GARCH -RE 
model is superior to the GARCH -Normal error model. 

ÅThe GARCH -RE model can be uses as  an alternative GARCH 
model.  
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Convergence of the covariance matrix

x1000 x1000



Acceptance at MH, measured every 1000

x1000



MC history of a



MetropolisAdaptive

Autocorrelation function



Acceptance at Metropolis-Hastings algorithm



adaptive Metropolis


